New Role for Cdc14 Phosphatase: Localization to Basal Bodies in the Oomycete Phytophthora and Its Evolutionary Coinheritance with Eukaryotic Flagella

نویسندگان

  • Audrey M. V. Ah-Fong
  • Howard S. Judelson
چکیده

Cdc14 protein phosphatases are well known for regulating the eukaryotic cell cycle, particularly during mitosis. Here we reveal a distinctly new role for Cdc14 based on studies of the microbial eukaryote Phytophthora infestans, the Irish potato famine agent. While Cdc14 is transcribed constitutively in yeast and animal cells, the P. infestans ortholog is expressed exclusively in spore stages of the life cycle and not in vegetative hyphae where the bulk of mitosis takes place. PiCdc14 expression is first detected in nuclei at sporulation, and during zoospore formation the protein accumulates at the basal body, which is the site from which flagella develop. The association of PiCdc14 with basal bodies was supported by co-localization studies with the DIP13 basal body protein and flagellar β-tubulin, and by demonstrating the enrichment of PiCdc14 in purified flagella-basal body complexes. Overexpressing PiCdc14 did not cause defects in growth or mitosis in hyphae, but interfered with cytoplasmic partitioning during zoosporogenesis. This cytokinetic defect might relate to its ability to bind microtubules, which was shown using an in vitro cosedimentation assay. The use of gene silencing to reveal the precise function of PiCdc14 in flagella is not possible since we showed previously that silencing prevents the formation of the precursor stage, sporangia. Nevertheless, the association of Cdc14 with flagella and basal bodies is consistent with their phylogenetic distribution in eukaryotes, as species that lack the ability to produce flagella generally also lack Cdc14. An ancestral role of Cdc14 in the flagellar stage of eukaryotes is thereby proposed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Architecture of the sporulation-specific Cdc14 promoter from the oomycete Phytophthora infestans.

The Cdc14 gene of Phytophthora infestans is transcribed specifically during sporulation, with no mRNA detectable in vegetative hyphae, and is required for sporangium development. To unravel the mechanisms regulating its transcription, mutated Cdc14 promoters plus chimeras of selected Cdc14 sequences and a minimal promoter were tested in stable transformants. This revealed that a tandem repeat o...

متن کامل

Decay of Genes Encoding the Oomycete Flagellar Proteome in the Downy Mildew Hyaloperonospora arabidopsidis

Zoospores are central to the life cycles of most of the eukaryotic microbes known as oomycetes, but some genera have lost the ability to form these flagellated cells. In the plant pathogen Phytophthora infestans, genes encoding 257 proteins associated with flagella were identified by comparative genomics. These included the main structural components of the axoneme and basal body, proteins invo...

متن کامل

Independent localization of plasma membrane and chloroplast components during eyespot assembly.

Like many algae, Chlamydomonas reinhardtii is phototactic, using two anterior flagella to swim toward light optimal for photosynthesis. The flagella are responsive to signals initiated at the photosensory eyespot, which comprises photoreceptors in the plasma membrane and layers of pigment granules in the chloroplast. Phototaxis depends on placement of the eyespot at a specific asymmetric locati...

متن کامل

The karyomastigont as an evolutionary seme.

The problem of eukaryogenesis--the evolutionary mechanism whereby eukaryotic cells evolved from prokaryotes--remains one of the great unsolved mysteries of cell biology, possibly due to the reductionist tendency of most scientists to work only within their subdisciplines. Communication between biologists who conduct research on the nucleus and those working on the cytoskeleton or endomembrane s...

متن کامل

Mechanosensory-defective, male-sterile unc mutants identify a novel basal body protein required for ciliogenesis in Drosophila.

uncoordinated (unc) mutants of Drosophila, which lack transduction in ciliated mechanosensory neurons, do not produce motile sperm. Both sensory and spermatogenesis defects are associated with disrupted ciliary structures: mutant sensory neurons have truncated cilia, and sensory neurons and spermatids show defects in axoneme ultrastructure. unc encodes a novel protein with coiled-coil segments ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011